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Propagation of Waves Through
Magnetoplasrna Slab Within

a Parallel-Plate Guide

HUA-CHENG CHANG, SHYH-KANG JENG, RUEY-BEEI WU,

AND CHUN HSIUNG CHEN

,4mtract —By applying the variational

equation is established for handling wave

reaction theory, a variational

propagation in a parallel-plate

guide within which a magnetized inhornogeneous lossy plasma slab is

inserted. Tbe equation is then solved by the finite-element method along

with the frontal solution algorithm. With such an approach, the reflection

coefficient and the field dMribution in the slab are obtained. In this study,

the factors which may influence the propagation characteristics of the guide

are stndled. These factors include the plasma electron density, the strength

and the direction of the static magnetic field, the midtb and the thickness of

the slab, and the electron collision Iosses. A special modal expansion

solution is also incorporated to investigate an anomalous numericaf insta-

bility associated with the present numerical algorithm.

1. INTRODUCTION

A PLASMA–DIELECTRIC sandwich structure used

as a microwave filter and with voltage (and, hence,

electron density) tuning has been reported recently [1].

With only layers of isotropic and homogeneous media, this

sandwich structure can be easily handled by the conven-

tional transmission-line techniques [2], [3]. However, if the

slab material within the guide is anisotropic and inhomoge-

neous, the associated problem then becomes very com-

plicated and is difficult to access.

For a simplified propagation problem through a one-

dimensional inhomogeneous plasma slab in an unbounded

region, some investigators [4], [5] made use of a special

technique to figure out the governing variational equation

and then used the finite-element method to find out the

field distribution. The extension of this technique to the

same propagation problem in the presence of an external

static magnetic field was unsuccessful owing to the intro-

duction of material anisotropy. This clifficulty has been

resolved by the methodology of variaticmal electromagnet-

ic [6], [7] and the variational reaction tlheory [8].

By extending the previous studies, this paper deals with

the guided wave problem in which a magnetized plasma
slab is placed within an infinitely extended parallel-plate

metallic guide. The reason to select this parallel-plate struc-

ture is that it may reduce the mathematics involved and

still allow a simplified analysis for a more practical strip
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transmission line where a magnetized plasma slab is incor-

porated.

In this study, the governing variational equation is first

derived, using the variational reaction theory. The equation

is then solved by the finite-element method coupled with

the frontal solution algorithm. In comparison with the

previous works and the modal expansion solutions (Ap-

pendix), the validity of the approach can be confirmed.

Finally included are the numerical results for specifying

the characteristics of the particular guiding structure.

II. VARIATIONAL FORMULATION

Consider an infinitely extended parallel metallic plate

guide as shown in Fig. 1 within which a slab of anisotropic,

inhomogeneous, a~d 10SSY rn~terial (PoL(.x, Y), ~o=(x, Y))

is inserted. Here, ji ( x, y) and E( x, y) represent the relative

permeability and permittivity tensors, respectively. Assume

that the slab occupies the region O < x G a, OG y < b, and

is illuminated by a TEM wave

~;= jlZ;exp(– jkox)

qo~: = ~~~exp(– jkox)

ko=om Vo={x. (1)

As usual, the time-harmonic factor exp (jut) is adopted

throughout this study.

In the slab, we shall let

[1

c xx c
XY

Cxz

;=
~ yx 6YY ~yz =

c Zx c
2Y

c,=

(2)

where the subscript t means the component transverse to

the z-direction and the superscript T means the transpose

of a matrix. Obviously, these two tensors are unit tensors

outside the slab.

By the variational reaction theory [8], we can achieve the

(~:, n=, formulation by choosing the longitudinal fields

(Ez, Hz) as unknowns. First, we constrain the transverse

sources (~, J4t ) to be zero and represent the transverse
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fields (~,, Et) in terms of the longitudinal ones, i.e.,

1.
Et= —i;l. (vHz x 2- jticoz,,E.)

j~co

Then, we further constrain the longitudinal sources

(.lz, MZ) to be zero outside the slab “so that the exterior

(Ez, Hz)’ fields are

(4)

where R and T are the modal coefficients to be determined

andl

k;=k&(m~/b)2, rn=l,2,... . (5)

The exterior (~,, ~,) fields can be expressed easily in terms

of the boundary ( EZ,”HZ) fields by (3). Also, these modal

coefficients can be expressed in terms of boundary fields

by matching the continuity conditions, i.e.,

1jb[E& TJOH=(X= 0)] dyRp’1 = –
bo

TfM= :~b@Z(X=U) d..
2b

()

m 7ry
.~R=z~Ez(x=O)sin — dy,

b
m=l,2, . . .

AR:M= ;J%oHz(x=mf&)dY

lnM=;Jb,oHz(x=.)cos(y)dY. (6)

Now the variational formula becomes

81=0

I= ~a~@;.Jz – H~J4=) dydx (7)
00

where

JZ=.2. (V Xfi– j@coS”z)

MZ=2. (–V X~– ju~O~”@.

By substituting (3)–(6) into (7) and making certain sim-

plifications, we finally obtain the variational formula for
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Fig. 1. Parallel-plate guide with magnetized, inbomogeneous, and 10SSY
plasma slab.

the unknown (E=, Hz) fields as follows:

.~bEzsin(?)dY]
x=o,a

+ ;~bH;(x = O) dy. ~b(;oHz(x =0)–2E~) dy. (8)

Here, (~;, ~;) are related to (E;, H:) by

III. FINITE-ELEMENT COMPUTATION

AND ITS VALIDATION

The resultant variational equation (8) will be solved by

the finite-element technique [7], [9], [10]. First, the whole

region O < x < a, 0< y <b is divided into 10a/A. X

10 b/A 0- 20a/A o x 20b/A oelements, the boundaries x =

O and x = a are considered as two elements, and in each

element several sampling nodes are chosen. The fields in
each element are interpolated, using the isoparametric

quadrature basis functions [9]. Next, the Ritz procedure [7],

[11] is employed to obtain a linear matrix equation. This
equation, then, is solved through a frontal solution al-

gorithm [7] which assembles and solves the final matrix
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equation element by element. This algorithm is rather

efficient in saving a computer’s core memory.

The problem that we are dealing with is the propagation

of waves in a magnetized cold plasma (p OF, eo:); thereby,

~=~

[

u jYHlz

1

– jYHIY ‘~
—

~=i_~N. – jYHlz U jYHlx

jYHIY – jYHlx u

U=l–jZC

1,= sin 6Mcos ~~ lY = sin 9~sin@~ 1== cos $~. (10)

Here the parameters XN, YH, and ZC are proportional to

the electron density N=, the strength of the static magnetic

field I?o, and the average collision frequency of electrons v,

respectively, [12]:

2 NedxN=~ (.J;=— YH := ~
meco u

(11)

As usual, q= and m. represent the charge and mass of an

electron. The parameters 19mand +~ are the azimuthal and

polar angles of the static magnetic field ((Fig. 1).

In a computer simulation, we assume that Y~, tl~, +~,

and ZC are constant. Only two electron clensity profiles are

considered in this paper, namely, the homogeneous one

‘xN=xm, O<x<a, O<y<b (12)

and the parabolic one

X~ = X~ [1 - (2x/a -1)2]. [1 - (2y/b -1)2],

O<x<a, O<y<b. (13)

If necessary, the strength of the static magnetic field and

the losses may also be inhomogeneous since the present

approach can handle the problems without increasing the

complexity.

To ensure the validity of this approach and the associ-

ated computer program, we first consider the case with a

lossless nonmagnetized homogeneous profile defined by (12).

Actually, this case has been solved exactly by the propa-

gation matrix method [3] in a recent study [1]. Fig. 2 shows

excellent agreement between their results and the present

ones (indicated by the symbol A). It provides at least

evidence of confirming the validity of the program. The

second check is made on the study of a nonmagnetized

plasma–dielectric sandwich filter [1]. Both the previous

study and our approach lead to the same center frequency

and bandwidth for any transmission window. The third

verification is conducted on the lossless magnetized plasma

with ~ol I~; and with profile (12), from which Fig. 2 is

again obtained. In this case, the Lorentz force [13] cannot

affect the electron’s motion; thus, the behavior of the wave

should be the same whether B. is zero or not.

IRI

Fig, 2. Curves of reflection coefficient versus X~ to check vafildity of

our approach. Homogeneous plasma slab M adopted with parameters

Z, = O and ~0 = O or ~0 = jBO (i.e., ~oll ~~). AO is the free-space
wavelength.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results to characterize the guiding system in

Fig. 1 are presented in this section. Here we assume that a

TEM wave is incident upon the plasma slab and that the

parallel-plate guide without the slab can only transmit the

TEM wave, thus leaving all other modes to be below

cutoff. Specifically, the reflection coefficient associated with

the TEM wave, R = R~”, will be computed and examined.

Shown in Figs. 3–7 are amplitudes of reflection coefficient

versus YH with Z=, b, and X. (the maximum of X~) as

parameters.

In Fig. 3(a), where the homogeneous profile (12) with

X~ = 0.5 is considered, it is found that all curves of IR I
undergo steady change when Y~ is small, and decrease

smoothly when Y~ is large. However, a la~ge and rapid

undulation is observed in the range 0.7< Y~ <1.06 as

losses are very small (ZC = 0.0025), and the undulation

phenomenon diminishes gradually (ZC = 0.01) and finally

disappears ( ZC = 0.1) as losses are increased.

To probe the source of such a mysterious phenomenon,

we have to solve exactly some specific problems. For-

tunately, in Fig. 3, where we assumed ~0 = Boi?, we may

get a simpler :,,. This enables us to have a modal expan-

sion solution (see the Appendix for a brief discussion). The

modal expansion results are exhibited in Fig. 3(b), and we

can notice easily that the curves are almost the same except

in the undulation interval of Fig. 3(a). This indicates that

the range 0.7< YH <1.06 is a difficult region for our ap-

proach. As depicted in the Appendix, this discrepancy

might arise partly because the fundamental mode in the

slab becomes evanescent as 1> Y~ > ~~ -0.7, and

partly because this mode is drastically oscillatory as Y~ z 1.

When Z, increases, the error—and the undulation— be-

comes negligible.

The effects of varying X~, b, and ZC are also examined.

From Figs. 4–6, we present the computed results and their

modal expansion counterparts. A similar undulation again

appears when b and X~ are not too small, and also

regretfully disappears in the model expansion results.
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Fig. 3. Amplitudes of reflection coefficient versus magnetization factor
YH with losses ZC as parameters. Homogeneous profile (12) is <on-

sidered w~h guide parrgneters: a = 10, b = O.lAO, X~ = 0.5, and B() =
2B0 (i.e., BO L ~~ and k.). (a) Variational solutions. (b) Modal expan-
sion solutions.

Finally, we inspect the parabolic profile (13) cases, in

which the modal expansion solution happens to be unavail-

able. The computed results together with a homogeneous

profile case for comparison are displayed in Fig. 7. It

seems that the undulation is more insignificant. Thus, we

may guess that the present approach can do better for the

more realistic parabolic

sit y.

v.

modeling of plasma electron den-

CONCLUSIONS

Based on the variational reaction theory, a variational

equation has been established for handling the problem of

wave propagation through a magnetized inhomogeneous

plasma slab which is within a parallel-plate guide. The

equation has been solved and converted into a computer

program, using the techniques of finite-element and frontal

solutions. The computer program has also been validated

by comparing its results for several specific cases to the

ones of previous studies.

This study also reveals some vulnerab~e spots of this

approach in dealing with the “undulation” region. How-

ever, it is also verified that this approach is reliable when

the parallel plates are closer, the electron density is lower,

and the loss is larger. A more solid theoretical analysis to

hanclle this numerical instability is worthy of further inves-

tigation.

IRI
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Fig. 4. Reflection coefficients versus YH with guide height b as parame-

ters. Homogeneous pr~file is adopted with parameters: a = AO, XM =
0.5, ZC = 0.01, and BO = 2B0. (a) Variational solutions. (b) Modal
expansion solutions.
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Fig. 5. Reflection coefficients versus Y~ with X~ as parameters. Homo-

geneous prqfile is adopted with parameters: a = X., b = O.lAO, ZC=
0.01, and El. = 2B0. (a) Variational solutions. (b) Modal expansion
solutions.
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Fig. 6. Computed results for X~ = 1.5 with YH as variables and Z< as

parameters. Plas~a slab of homogeneous profile is adopted with a = A.,
b = O.lAO, and II.= 2B0. (a) Variational solutions. (b) Modal expan-

sion solutions.
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Fig. 7. Computed results for homogeneous profile (12) and parabolic

profile (13) to illustrate the effect of profile inhomogeneity. Associated
guide parameters are a = Ao, b = O.lAO, X~ = 0.5, ZC = 0.01, and

go = ?Bo.

APPENDIX

MODAL EXPANSION METHOD

Once we can find the modal solutions in the magneto-

plasma slab sandwiched by the parallel-plate guide, we can

apply the modal expansion method to solke the wave-prop-

agation problem as shown in Fig. 1. When the plasma slab

is magnetized along the z-direction, the relative permittiv-

ity tensor is

where

E1=l–lJxN/(u*-Y; )

c~ = YHXJ(U2 – Y;)

cZz =1 – xN/u.

For the incident TEM wave as shown in Fig. 1, only the

extraordinary wave will be excited in the slab. The modal

solutions are thus

(k~~ = k; c1– C;/Cl )-(m~/b)2, m=l 279”””.

(A2)

Peculiarly, the fundamental mode cannot be achieved

from (A2) with m = O if only E~ + O. However, the mode is

still achievable with k~o = k~tl instead; i.e.,

EX=O

qoHz = exp [kXo(– Czy\C1 – jx)]

EY = (ko/kXo). qoHz. (A3)

For the lossless cases, this mode becomes evanescent in the

x-direction as c1 <0, i.e.,

l> Y;>l– X N. (A4)
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