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Propagation of Waves Through
Magnetoplasma Slab Within
a Parallel-Plate Guide

HUA-CHENG CHANG, SHYH-KANG JENG, RUEY-BEEI WU,
AND CHUN HSIUNG CHEN

Abstract —By applying the variational reaction theory, a variational
equation is established for handling wave propagation in a parallel-plate
guide within which a magnetized inhomogeneous lossy plasma slab is
inserted. The equation is then solved by the finite-element method along
with the frontal solution algorithm. With such an approach, the reflection
coefficient and the field distribution in the slab are obtained. In this study,
the factors which may influence the propagation characteristics of the guide
are studied. These factors include the plasma electron density, the strength
and the direction of the static magnetic field, the width and the thickness of
the slab, and the electron collision losses. A special modal expansion
solution is also incorporated to investigate an anomalous numerical insta-
bility associated with the present numerical algorithm.

1. INTRODUCTION

PLASMA-DIELECTRIC sandwich structure used

as a microwave filter and with voltage (and, hence,
electron density) tuning has been reported recently [1].
With only layers of isotropic and homogeneous media, this
sandwich structure can be easily handled by the conven-
tional transmission-line techniques [2], [3]. However, if the
slab material within the guide is anisotropic and inhomoge-
neous, the associated problem then becomes very com-
plicated and is difficult to access.

For a simplified propagation problem through a one-
dimensional inhomogeneous plasma slab in an unbounded
region, some investigators [4], [5] made use of a special
technique to figure out the governing variational equation
and then used the finite-element method to find out the
field distribution. The extension of this technique to the
same propagation problem in the presence of an external
static magnetic field was unsuccessful owing to the intro-
duction of material anisotropy. This difficulty has been
resolved by the methodology of variaticnal electromagnet-
ics [6], [7] and the variational reaction theory [8].

By extending the previous studies, this paper deals with
the guided wave problem in which a magnetized plasma
slab is placed within an infinitely extended parallel-plate
metallic guide. The reason to select this parallel-plate struc-
ture is that it may reduce the mathematics involved and
still allow a simplified analysis for a more practical strip
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transmission line where a magnetized plasma slab is incor-
porated.

In this study, the governing variational equation is first
derived, using the variational reaction theory. The equation
is then solved by the finite-element method coupled with
the frontal solution algorithm. In comparison with the
previous works and the modal expansion solutions (Ap-
pendix), the validity of the approach can be confirmed.
Finally included are the numerical results for specifying
the characteristics of the particular guiding structure.

II. VARIATIONAL FORMULATION

Consider an infinitely extended parallel metallic plate
guide as shown in Fig. 1 within which a slab of anisotropic,
inhomogeneous, and lossy material (pofE(x, y), €,€(x, y))
is inserted. Here, fi(x, y) and é(x, y) represent the relative
permeability and permittivity tensors, respectively. Assume
that the slab occupies the region 0 < x < a, 0 < y < b, and
is illuminated by a TEM wave

Ej = pEjexp(— jkox)
noHy= 2Ejexp(— jkox)
ko= wypqeg 710=VI~L0/€0- (1)

As usual, the time-harmonic factor exp(jwt) is adopted
throughout this study.
In the slab, we shall let

exx exy €x‘: = -
= € € € € €z
€= rx o Cyz (S g
€ €.
_ezx €zy €. zt iz
= lu'tt l'l’tz
i Rl 2)
_M‘zt lu‘zz

where the subscript ¢ means the component transverse to
the z-direction and the superscript T means the transpose
of a matrix. Obviously, these two tensors are unit tensors
outside the slab.

By the variational reaction theory [8], we can achieve the
(E,, H,) formulation by choosing the longitudinal fields
(E,, H,) as unknowns. First, we constrain the transverse
sources (J,, M,) to be zero and represent the transverse
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fields (E,, H,) in terms of the longitudinal ones, Le.,
E—t =" €ttl (VH XZ- .]ch(tz z)
Jweg
H, Rt (VE, X2+ jopo H).  (3)

Then, we further constrain the longitudinal sources
(J,, M,) to be zero outside the slab so that the exterior
(E,, H,) fields are

may\
Z RTEsm(T)e/"mx, x<0
E =( ", mayy - v
Z Sm( b )e]km(a"x), X > a
EleJkox — Z R,T,,Mcos( )efk'"" x<0
m=90
T'OIIZ - o ™ may ’ "
Y T cos( > )ef m@=¥ " x>a
m=0

(4)

where R and T are the modal coefficients to be determined
and

~(mm/b)’, (5)
The exterior (E,, H,) fields can be expressed easily in terms
of the boundary (E,, H,) fields by (3). Also, these modal

coefficients can be expressed in terms of boundary fields
by matching the continuity conditions, i.e.,

m=1,2,--- .

1 .
RM= ;fob[Eé —noH,(x=0)] dy

1 4
~TM _ =
70 - bj(;nOHz(x a)dy

2 p: mm
R'an=—bez(x=.0)sin(-——y)dy,' m=12,---
T,JE= /E (x= a)sm( )dy

may
RTM——fnoH (x= 0)005( P )dy
mm

TmTM=—f nOHZ(x=a)cos( )dy. (6)

b

Now the variational formula becomes
8I=0

1= fo ‘ fo "(E2J,~ HIM.,) dydx 7

. where :
J,=5-(v X H— jwef-E)
=2(=V XE — jopoh-E).

By substituting (3)-(6) into (7) and making certain sim-
plifications, we finally obtain the variational formula for

Fig. 1.
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Parallel-plate guide with magnetized, inhomogeneous, and lossy
plasma slab.

the unknown (E,, H,) fields as follows:

<« rb . Ta = =
Iz./(; _/(’) [Jweo(Et € E —
- jwuo(ﬁta'ﬁtt.ﬁt - Hza"'zsz)] dydx

[+4} 2 b .
+ [mgl(nokm/ko);‘/(;Hz Coé(

m
. fbHZcos( iLd ) dy]
0 b

Z ZZ Z)

may
b

o

x=0,a

x=0,a
1 B , .
+Z/0Hz(x=0) dy-/o(nOHz(x=0)—2EO)dy. (8)

Here, (Ef, H?) are related to (E¢, H®) by

_ 1
Ef=- (‘_5) '

Jweg

(VHE X 2= joeE,, E)

He=—(in) "

JWkg

'(sza XZ+ jw""Oﬁthza‘)'

()

1II. FINITE-ELEMENT COMPUTATION

AND ITS VALIDATION

The resultant variational equation (8) will be solved by
the finite—element technique [71, [9], [10]. First, the whole
region 0 < x< <y<b is divided into 10a/A X
10b/A o~ 20a/ )\ >< 20b /A jelements, the boundaries x =
0 and x=a are cons1dered as two elements, and in each
element several sampling nodes are chosen. The fields in
each element are interpolated, using the isoparametric
quadrature basis functions [9]. Next, the Ritz procedure [7],
[11] is employed to obtain a linear matrix equation. This
equation, then, is solved through a frontal solution al-
gorithm [7] which assembles and solves the final matrix
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equation element by element. This algorithm is rather
efficient in saving a computer’s core memory.

The problem that we are dealing with is the propagation
of waves in a magnetized cold plasma (p,ft, €,€); thereby,

p=1
U JYyl, —J¥yl, |7t
€:=T—XN' — JYgl, U Yl
jYHly _jYHlx U
U=1-jZz,

I =sinf,cos¢, [, =sinf,sing, [,=cosd,. (10)

Here the parameters X, Yy, and Z, are proportional to
the electron density N,, the strength of the static magnetic
field B, and the average collision frequency of electrons »,
respectively, [12]:

X =ﬁ w? =M Y, :=.w_H
Moot N meg, 7w
quO v
= Z,=—, 11
Wr m c w ( )

As usual, ¢, and m, represent the charge and mass of an
electron. The parameters 6,, and ¢,, are the azimuthal and
polar angles of the static magnetic field (Fig. 1).

In a computer simulation, we assume that Yy, 6, ¢,
and Z, are constant. Only two electron density profiles are
considered in this paper, namely, the homogeneous one

Xy=X,, 0<x<a0<y<h (12)

and the parabolic one

Xy=X,[1-(x/a-1]-[1-@y/b-1Y],

0<x<a, 0<y<bh. (13)

If necessary, the strength of the static magnetic field and
the losses may also be inhomogeneous since the present
approach can handle the problems without increasing the
complexity.

To ensure the validity of this approach and the associ-
ated computer program, we first consider the case with a
lossless nonmagnetized homogenous profile defined by (12).
Actually, this case has been solved exactly by the propa-
gation matrix method [3] in a recent study [1]. Fig. 2 shows
excellent agreement between their results and the present
ones (indicated by the symbol A). It provides at least
evidence of confirming the validity of the program. The
second check is made on the study of a nonmagnetized
plasma—dielectric sandwich filter [1]. Both the previous
study and our approach lead to the same center frequency
and bandwidth for any transmission window. The third
verification is conducted on the lossless magnetized plasma
with By||E} and with profile (12), from which Fig. 2 is
again obtained. In this case, the Lorentz force [13] cannot
affect the electron’s motion; thus, the behavior of the wave
should be the same whether B, is zero or not.
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Fig. 2. Curves of reflection coefficient versus X,, to check valildity of
our approach. Homogeneous plasma slab 1s adopted with parameters
Z,=0 and By=0 or By=5B, (ic., ByllE). A, is the free-space
wavelength.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results to characterize the guiding system in
Fig. 1 are presented in this section. Here we assume that a
TEM wave is incident upon the plasma slab and that the
parallel-plate guide without the slab can only transmit the
TEM wave, thus leaving all other modes to be below
cutoff. Specifically, the reflection coefficient associated with
the TEM wave, R = RTM, will be computed and examined.
Shown in Figs. 37 are amplitudes of reflection coefficient
versus Yy, with Z, b, and X,, (the maximum of X)) as
parameters.

In Fig. 3(a), where the homogeneous profile (12) with
X,.=0.5 is considered, it is found that all curves of |R|
undergo steady change when Y}, is small, and decrease
smoothly when Y, is large. However, a large and rapid
undulation is observed in the range 0.7<7Y, <1.06 as
losses are very small (Z,=0.0025), and the undulation
phenomenon diminishes gradually (Z,=0.01) and finally
disappears (Z, = 0.1) as losses are increased.

To probe the source of such a mysterious phenomenon,
we have to solve exactly some specific problems. For-
tunately, in Fig. 3, where we assumed B, = B,%, we may
get a simpler ¢,,. This enables us to have a modal expan-
sion solution (see the Appendix for a brief discussion). The
modal expansion results are exhibited in Fig. 3(b), and we
can notice easily that the curves are almost the same except
in the undulation interval of Fig. 3(a). This indicates that
the range 0.7 <Y, <1.06 is a difficult region for our ap-
proach. As depicted in the Appendix, this discrepancy
might arise partly because the fundamental mode in the
slab becomes evanescent as 1> Y, >\1— X, ~ 0.7, and
partly because this mode is drastically oscillatory as Y, > 1.
When Z, increases, the error—and the undulation— be-
comes negligible.

The effects of varying X,,, b, and Z, are also examined.
From Figs. 4-6, we present the computed results and their
modal expansion counterparts. A similar undulation again
appears when b and X,, are not too small, and also
regretfully disappears in the model expansion results.
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Fig. 3. Amplitudes of reflection coefficient versus magnetization factor
Yy with losses Z, as parameters. Homogeneous profile (12) is con-

sidered with guide parameters: a =X, b=0.1A,, X,, =05, and B, =

2B, (ic., By L Ej and k). (a) Variational solutions. (b) Modal expan-
sion solutions.

Finally, we inspect the parabolic profile (13) cases, in
which the modal expansion solution happens to be unavail-
able. The computed results together with a homogeneous
profile case for comparison are displayed in Fig. 7. It
seems that the undulation is more insignificant. Thus, we
may guess that the present approach can do better for the
more realistic parabolic modeling of plasma electron den-
sity.

V. CONCLUSIONS

Based on the variational reaction theory, a variational
equation has been established for handling the problem of
wave propagation through a magnetized inhomogencous
plasma slab which is within a parallel-plate guide. The
equation has been solved and converted into a computer
program, using the techniques of finite-element and frontal
solutions. The computer program has also been validated
by comparing its results for several specific cases to the
ones of previous studies.

This study also reveals some vulnerable spots of this
approach in dealing with the “undulation” region. How-
ever, it is also verified that this approach is reliable when
the parallel plates are closer, the electron. density is lower,
and the loss is larger. A more solid theoretical analysis to
handle this numerical instability is worthy of further inves-
tigation. '
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Fig. 4. Reflection coefficients versus Y, with guide height b as parame-
ters. Homogeneous profile is adopted with parameters: a =Xy, X, =
05, Z,=0.01, and By,=2B,. (a) Variational solutions. (b) Modal
expansion solutions.
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Fig. 5. Reflection coefficients versus Y with X, as parameters. Homo-
geneous profile is adopted with parameters: a =Ag, b=0.1A,, Z,=
0.01, and B, =2B,. (a) Variational solutions. (b) Modal expansion
solutions.
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Fig. 6. Computed results for X,, =1.5 with Yy as variables and Z, as
parameters. Plasma slab of homogeneous profile is adopted with a = Ao,
b=0.1\,, and B, =2B,. (a) Variational solutions. (b) Modal expan-
sion solutions.
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Fig. 7. Computed results for homogeneous profile (12) and parabolic
profile (13) to illustrate the effect of profile inhomogeneity. Associated
guide parameters are a=2A,, b=017,, X,=05 Z,=00l, and
B, = £B,.

APPENDIX
MobpAL EXPANSION METHOD

Once we can find the modal solutions in the magneto-
plasma slab sandwiched by the parallel-plate guide, we can
apply the modal expansion method to solve the wave-prop-
agation problem as shown in Fig. 1. When the plasma slab
is magnetized along the z-direction, the relative permittiv-
ity tensor is

€ je, 0
e=|—Jj&u 0 (Al)
0 0 €,

where
e =1-UXy/(U*-Y3)
€, =Y, Xy/(U?-Y2)
e,,=1-X,/U.

For the incident TEM wave as shown in Fig. 1, only the
extraordinary wave will be excited in the slab. The modal
solutions are thus

kob [ ki.\ . mmy
E = ALl 1-— ) sin Y e kemx
mir kgeq b
mw bk, € mi
nOHz = | cos 4 — -2 n Y e*/kxmx
b mme, b
kxm may bk ¢ ma .
E, = cos - sin Y e Ikumx
| ko€, b mme; b
kin=ki(e =€ /)= (ma/b)',  m=12,

(A2)

Peculiarly, the fundamental mode cannot be achieved
from (A2) with m = 0 if only ¢, # 0. However, the mode is

still achievable with k2, = kje, instead; i.e.,

E =0
noH, = exp [kxO(_ €y/€— jx)]
Eyz(kO/kxO).nOHz' (A3)

For the lossless cases, this mode becomes evanescent in the
x-direction as €; <0, i.e.,

1>Y3>1— Xy. (A4)
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